Welcome to the Exergoecology Portal
You are here: Home / Resources / Exergoecology bibliography / Performance Analysis of the Small-Scale α-Type Stirling Engine Using Computational Fluid Dynamics Tools

Zbigniew Buliński, Ireneusz Szczygieł, Adam Kabaj, Tomasz Krysiński, Paweł Gładysz, Lucyna Czarnowska, and Wojciech Stanek (2017)

Performance Analysis of the Small-Scale α-Type Stirling Engine Using Computational Fluid Dynamics Tools

Journal of Energy Resources Technology, 140(3).

This paper presents the computational fluid dynamics (CFD) model of small-scale α-type Stirling engine. The developed mathematical model comprises of unsteady Reynolds averaged Navier–Stokes set of equations, i.e., continuity, momentum, and energy equations; turbulence was modeled using standard κ–ω model. Moreover, presented numerical model covers all modes of heat transfer inside the engine: conduction, convection, and radiation. The model was built in the framework of the commercial CFD software ANSYS fluent. Piston movements were modeled using dynamic mesh capability in ANSYS fluent; their movement kinematics was described based on the crankshaft geometry and it was implemented in the model using user-defined functions written in C programming language and compiled with a core of the ANSYS fluent software. The developed numerical model was used to assess the performance of the analyzed Stirling engine. For this purpose, different performance measures were defined, including coefficient of performance (COP), exergy efficiency, and irreversibility factor. The proposed measures were applied to evaluate the influence of different heating strategies of the small-scale α-type Stirling engine.

Document Actions

NEWSLETTER

Please subscribe for the new newsletter.

unsubscribe
EXERGY MANIFESTO
SUPPORTED BY
Logo instituto Circe
Ministerio de Economía y Competitividad
Ulysea S.L. - Informática
RELEVANT BOOKS

Thanatia. Los límites minerales del planeta

 Antonio Valero Capilla and Alicia Valero Delgado interviewed by Adrián Almazán

We need a material transition, not only energetic, that restores nature and effectively reuses materials. Gaia must be cared for by extending life on Earth and slowing its degradation towards Thanatia.

Thanatia los limites

BUY NOW

Thermodynamics for Sustainable Management of Natural Resources

Cover Thermodynamics

Wojciech Stanek (Editor)

This book examines ways of assessing the rational management of nonrenewable resources. Integrating numerous methods, it systematically exposes the strengths of exergy analysis in resources management.

Thanatia: The Destiny of the Earth's Mineral Resources

Cover Thanatia

A Thermodynamic Cradle-to-Cradle Assessment by (author): Antonio Valero Capilla and Alicia Valero Delgado

Is Gaia becoming Thanatia, a resource exhausted planet? For how long can our high-tech society be sustained in the light of declining mineral ore grades, heavy dependence on un-recycled critical metals and accelerated material dispersion? These are all root causes of future disruptions that need to be addressed today.