Welcome to the Exergoecology Portal
You are here: Home / Resources / Exergoecology bibliography / Simulation-based design for resource efficiency of metal production and recycling systems: Cases - copper production and recycling, e-waste (LED lamps) and nickel pig iron

Markus A Reuter, Antoinette v Schaik, and Johannes Gediga (2015)

Simulation-based design for resource efficiency of metal production and recycling systems: Cases - copper production and recycling, e-waste (LED lamps) and nickel pig iron

International Journal of Life Cycle Assessment, 20:671-693.

Purpose: This paper illustrates how a product-centric approach to recycling, building on the extensive expertise, knowhow and tools of the mineral-centric classical minerals and metallurgical processing, should be core to Design for Resource Efficiency (DfRE). Methods: Process simulation (HSC Sim 1974-2014, Outotec's design tool) and environmental software (GaBi 2014) are applied to quantify resource efficiency (RE) in a rigorous manner. These digitalisation tools are linked and will be used to show how the environmental performance of copper primary production, the processing of residues and the recycling of e-waste, e.g. light emitting diode (LED) lamps as well as the production of nickel pig iron can be evaluated. The paper also shows how technologies can be compared relative to a precise thermodynamic and techno-economic baseline. Results: The results include simulation-based environmental indicators, exergy, recycling and recovery rates, as well as the qualities and quantities of the recyclates, losses and emissions of materials during production recycling. The complete mass and energy balance simulation provides the mineralogical detail of all streams (both mineral and recyclate as well as offgas and dust) to define and improve environmental assessment, while at the same time revealing the aspects of LCA databases and their results that require improvement. Furthermore, this paper presents an approach for industry to implement life-cycle methods in practice. It shows that the DfRE is all about predicting stream grades and thus is equivalent to Design for Recyclate grade and quality (as this determines whether a recyclate or product stream has economic value and can be treated or processed further). DfRE also reveals especially the grade, composition, minerals etc. of the leakage streams, i.e. diffuse emissions, thus permitting a more precise evaluation of environmental impact. Conclusions: The prediction of recyclate and stream compositions and grade makes the environmental analysis of systems more precise and will help to expand the detail that defines these flows on environmental databases. This is especially valuable for DfR, where the methodological rigour suggested in this paper is a very necessary addition and requirement for estimating the true environmental impact of product redesigns and the resource efficiency of processing technology and complete recycling systems. The methodology produces mass- and energy-consistent, economically viable best available technique (BAT) process blocks, the inclusion of which on environmental databases will be invaluable in benchmarking technology and systems in terms of estimating the achievable resource efficiency baseline.

Copper production and scrap recycling, Design for Resource Efficiency, E-waste and WEEE, Ecodesign, Greenprinting, LCA, LED lamp recycling, Nickel pig iron (NPI) production, Process metallurgy, Product-centric Design for Recycling (DfR), System design

Document Actions

NEWSLETTER

Please subscribe for the new newsletter.

unsubscribe
EXERGY MANIFESTO
SUPPORTED BY
Logo instituto Circe
Ministerio de Economía y Competitividad
Ulysea S.L. - Informática
RELEVANT BOOKS

Thanatia. Los límites minerales del planeta

 Antonio Valero Capilla and Alicia Valero Delgado interviewed by Adrián Almazán

We need a material transition, not only energetic, that restores nature and effectively reuses materials. Gaia must be cared for by extending life on Earth and slowing its degradation towards Thanatia.

Thanatia los limites

BUY NOW

Thermodynamics for Sustainable Management of Natural Resources

Cover Thermodynamics

Wojciech Stanek (Editor)

This book examines ways of assessing the rational management of nonrenewable resources. Integrating numerous methods, it systematically exposes the strengths of exergy analysis in resources management.

Thanatia: The Destiny of the Earth's Mineral Resources

Cover Thanatia

A Thermodynamic Cradle-to-Cradle Assessment by (author): Antonio Valero Capilla and Alicia Valero Delgado

Is Gaia becoming Thanatia, a resource exhausted planet? For how long can our high-tech society be sustained in the light of declining mineral ore grades, heavy dependence on un-recycled critical metals and accelerated material dispersion? These are all root causes of future disruptions that need to be addressed today.